МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

(ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Председатель приемной комиссии

Ректор

А. Ендовицкий

21 октября 2022

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ МАГИСТРАТУРЫ

14.04.02 Ядерные физика и технологии

Программа разработана на основе ФГОС высшего образования по программе бакалавриата 14.03.02 Ядерные физика и технологии.

Вступительное испытание для поступающих в магистратуру проводятся в объеме Государственного экзамена по ядерной физике для бакалавров физики и по дополнительным вопросам программы бакалавриата, соответствующим выбранной программе магистерской подготовки. Вопросы контрольно-измерительного материала (КИМа) позволяют оценить качество знаний, необходимых для освоения программы подготовки магистра по избранному направлению.

При проведении вступительных испытаний в магистратуру по направлению 14.04.02 «Ядерная физика и технологии» возможно применение дистанционных образовательных технологий. Номинальное время, отводимое на вступительное испытание - 160 минут.

Аннотации к программам по направлению подготовки 14.04.02 «Ядерные физика и технологии» (очная форма обучения)

1. Наименование магистерской программы: **«Физика ядра и частиц»** Руководитель: профессор кафедры ядерной физики, д.ф.-м.н., проф. **С.Г. Кадменский.**

Краткое описание магистерской программы: в рамках магистерской программы предусмотрено изучение источников ядерных излучений, методов регистрации и измерения физических характеристик ядер и элементарных частиц, процессов взаимодействия частиц, ядерных реакций и реакторов, ускорителей, экспериментальное изучение фундаментальных явлений физики микромира, изучение современных теоретических представлений и математических методов исследований в физике ядра и элементарных частиц, физических основ атомной энергетики, физики и кинетики ядерных реакторов.

Программа вступительных испытаний для поступающих по направлению 14.04.02 Ядерная физика и технологии Основные разделы

ФИЗИКА ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Составители: Овчинников О.В. — д.ф-м.н, декан физического факультета, Кадменский С.Г. — д.ф-м.н, профессор кафедры ядерной физики, Титова Л.В. — к.ф-м.н, заведующий кафедрой ядерной физики,.

Основные знания, умения и навыки, которыми должен обладать абитуриент. К основным требованиям, предъявляемым к знаниям и умениям абитуриентов, относятся наличие у последних личностных качеств, которые позволят профессиональной осуществлять следующие виды деятельности: исследовательская, научноинновационная, организационно-управленческая, педагогическая и просветительская, а также сформированных общекультурных (универсальных) профессиональных профессиональных, (общенаучно-И

исследовательских, научно-инновационных, организационно- управленческих, педагогических и просветительских) компетенций. Кроме того, для успешного освоения данной образовательной программы подготовки магистра абитуриент должен обладать базовыми фундаментальными знаниями в области физики, математики и информатики в объёме государственных образовательных стандартов.

Тематический план:

- 1. Сохранение качества. Квантовая лестница Вайскопфа. Характерные размерные параметры ядерной физики.
- 2. Статические свойства атомных ядер. Состав атомных ядер. Спины ядер. Размеры атомных ядер. Опыты Хофштадтера.
 - 3. Капельная модель атомного ядра. Формула Вайцзеккера.
 - 4. Электрические и магнитные моменты ядер.
 - 5. Магнитные моменты ядер.
 - 6. Квадрупольные электрические моменты атомных ядер. Форма ядер.
- 7. Магнитные дипольные моменты ядер. Ядерный магнитный резонанс и его применение.
 - 8. Четность. Несохранение четности. Статистика атомных ядер.
 - 9. Моменты инерции атомных ядер.
 - 10. Оболочечная модель атомного ядра. Магические числа.
- 11. Обобщенная модель ядра. Пределы сильной и слабой связи в обобщенной модели ядра. Коллективные колебания в атомных ядрах.
 - 12. Спаривание нуклонов в атомных ядрах. Сверхтекучесть.
 - 13. Взаимодействие легких заряженных частиц с веществом.
- 14. Взаимодействие тяжелых заряженных частиц с веществом. Потери энергии. Длина пробега частицы в веществе.
- 15. Альфа-распад. Законы сохранения при альфа-распаде ядер. Теории альфараспада.
- 16. Бета-распад атомных ядер. Классификация. Законы сохранения при бета-распаде ядер. Электронные спектры.
 - 17. Элементарная теория бета-распада. Правило Сарджента.
- 18. Гамма-распад атомных ядер. Законы сохранения при гамма-распаде ядер. Длинноволновое приближение.
 - 19. Ядерная изомерия. Эффект Мёссбауэра.
 - 20. Деление атомных ядер.
 - 21. Изомеры формы
 - 22. Понятие о ядерных силах и их основные свойства.
- 23. Теория Юкавы, взаимопревращаемость нуклонов. Нейтрино. Мезоны. Обменное взаимодействие нуклонов в ядре. Основные схемы обмена виртуальными мезонами между нуклонами в ядре.
- 24. Естественная радиоактивность. Закон радиоактивного распада. Постоянная распада, период полураспада, время жизни радиоактивного вещества.
 - 25. Частицы и античастицы. Характеристики и свойства лептонов. Основные

пути распада нестабильных лептонов.

- 26. Кварки, их физические характеристики.
- 27. Адроны, кварковая модель адронов.
- 28. Цепная реакция деления.
- 29. Ядерные реакции. Общее понятие. Эндо- и экзоэнергетические ядерные реакции. Порог реакции. Сечение ядерной реакции. Законы сохранения в ядерных реакциях.
- 30. Механизмы ядерных реакций. Составное ядро. Резонансные ядерные реакции. Формула Брейта-Вигнера.
 - 31. Упругое рассеяние частиц. Метод импульсных диаграмм.
 - 32. Замедление нейтронов в веществе
 - 33. Диффузия нейтронов в веществе.
 - 34. Ядерные реакторы.
 - 35. Экспериментальные методы определения импульсов заряженных частиц.
 - 36. Газонаполненные детекторы с газовым усилением
 - 37. Сцинтилляционные спектрометры гамма-излучения
- 38. Методы определения зарядового и массового чисел тяжелых заряженных частиц
 - 39. Определение периода полураспада долгоживущих радионуклидов
- 40. Определение активных радионуклидных источников методом гамма-гамма совпадений
- 41. Определение коэффициента ядерной конверсии методом электронной спектрометрии
 - 42. Определение времени жизни мюона
- 43. Определение времени жизни возбужденных состояний ядер методом задержанных совпадений
- 44. Определение ветвей распада ядер методом спектрометрии заряженных частии
 - 45. Определение сечений ядерных реакций методом активационного анализа

Список рекомендуемой литературы

- 1 Капитонов И. М. Введение в физику ядра и частиц : учебное пособие для студ. физ. фак.класс. ун-тов и других вузов, обуч. по специальности "Ядер. физика" и направлению "Физика" / И. М. Капитонов .— Изд. 3-е, испр. и доп. М. : КомКнига, 2006.— 327с.
- 2 Ишханов Б. С. Частицы и атомные ядра : учебник по дисциплине "Физика атом. ядра" для студ. вузов, обуч. "Физика" / Б.С. Ишханов, И.М. Капитонов, Н.П. Юдин ; Моск. гос. ун- т им. М.В. Ломоносова .— Изд. 2-е, испр. и доп. М. : URSS : Изд-во ЛКИ, 2007 .— 581 с.
- 3 Абрамов А. И. Основы экспериментальных методов ядерной физики: учебное пособие для студ. вузов / А.И. Абрамов, Ю.А. Казанский, Е.С. Матусевич. 2-е изд., перераб. и доп. М.: Атомиздат, 1977.— 524 с.
 - 4 Широков, Юрий Михайлович. Ядерная физика : учебное пособие для

студ. физ. спец. вузов / Ю.М. Широков, Н.П. Юдин .— 2-е изд., перераб. — М. : Наука : Физматлит, 1980 .— 727 с. : ил., табл. — (Общий курс физики).

- 5 Мухин, Константин Никифорович. Экспериментальная ядерная физика : учебник для студ. вузов, обуч. по спец. "Физика" : [в 2 т.] / К.Н. Мухин .— 3-е изд., перераб. и доп. М. : Атомиздат, 1974-. Т. 1: Физика атомного ядра .— 1974 .— 584 с. : ил.
- 6 Мухин, Константин Никифорович. Экспериментальная ядерная физика: учебник для студ. вузов, обуч. по спец. "Физика" : [в 2 т.] / К.Н. Мухин .— 3-е изд., перераб. и доп. М. : Атомиздат, 1974-. Т. 2: Физика элементарных частиц .— 1974 .— 335 с. : ил.

Образец контрольно-измерительного материала (КИМ) Вариант №1

- 1. Взаимодействие тяжелых заряженных частиц с веществом. Потери энергии. Длина пробега частицы в веществе.
- 2. Размеры ядер. Статические свойства ядер. Статистические свойства ядер. Четность. Несохранения четности.
- 3. Естественная радиоактивность. Закон радиоактивного распада. Постоянная распада, период полураспада, время жизни радиоактивного вещества.

Вариант №2

- 1. Понятие о ядерных силах и их основные свойства.
- 2. Определение сечений ядерных реакций методом активационного анализа.
- 3. Взаимодействие легких заряженных частиц с веществом.

Вариант №3

- 1. Взаимодействие тяжелых заряженных частиц с веществом. Потери энергии. Длина пробега частицы в веществе.
 - 2. Спаривание нуклонов в атомных ядрах. Сверхтекучесть.
 - 3. Сцинтилляционные спектрометры гамма-излучения.

Критерии оценки качества подготовки поступающего:

Вступительное испытание проводится в письменной форме. Время, отводимое на вступительное испытание - 160 минут. Максимальная оценка вступительного испытания составляет 100 баллов. Минимальное количество баллов, подтверждающее успешное прохождение вступительного испытания, составляет 40 баллов.

Максимальная оценка ответа на 1 вопрос - 30 баллов, на 2 вопрос - 35 баллов, на 3 вопрос - 35 баллов. Итоговое количество баллов вступительного испытания определяется как сумма баллов за три вопроса в билете и составляет 100 баллов. Абитуриенты, набравшие менее 40 баллов, выбывают из конкурса.

Ответ абитуриента на вопросы КИМ оцениваются в соответствии со следующими критериями:

- 90 - 100 баллов по трем вопросам выставляются абитуриенту, если он глубоко

и подробно изложил программный материал, исчерпывающе, последовательно, четко и логически стройно выстроил ответ, свободно владеет терминологией и свободно ориентируется в теоретическом и практическом материале.

- 76 89 баллов по трем вопросам выставляются абитуриенту, если он твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопросы, правильно применяет терминологию.
- 41 75 баллов по трем вопросам выставляются абитуриенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.
- 0 40 баллов по трем вопросам выставляются абитуриенту, который не знает значительной части программного материала, допускает принципиальные ошибки, не может логично сформулировать ответ.