МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Ректор 27 октября 2023

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ МАГИСТРАТУРЫ

01.04.02 Прикладная математика и информатика

Программа разработана на основе ФГОС высшего образования по программе бакалавриата 01.03.02 Прикладная математика и информатика.

Объектами профессиональной деятельности магистра прикладной математики и информатики являются научно - исследовательские центры, государственные органы управления, образовательные учреждения и организации различных форм собственности, использующие методы прикладной математики и компьютерные технологии в своей работе.

Магистр прикладной математики и информатики подготовлен к деятельности, требующей углубленной фундаментальной и профессиональной подготовки, в том числе к научно-исследовательской работе в областях, использующих методы прикладной математики и компьютерные технологии, созданию и использованию математических моделей процессов и объектов, разработке и применению современных математических методов и программного обеспечения для решения задач науки, техники, экономики и управления, использованию информационных технологий в проектно-конструкторской, управленческой и финансовой деятельности. Магистр прикладной математики и информатики подготовлен к научно-педагогической деятельности при условии освоения им соответствующей образовательной программы педагогического профиля.

Магистр прикладной математики и информатики может занимать должности, требующие высшего образования в соответствии с законами Российской Федерации.

Вступительное испытание по дисциплине «Прикладная математика и программирование».

Форма вступительного испытания: письменный экзамен

Аннотации к программам по направлению «Прикладная математика и информатика» (очная форма обучения)

1. Наименование магистерской программы: «Информационные технологии в экономической деятельности»

Руководитель программы: Азарнова Татьяна Васильевна, доктор технических наук, профессор, заведующий кафедрой математических методов исследования операций факультета ПММ.

Программа реализуется кафедрой математических методов исследования операций и кафедрой кибербезопасности информационных систем.

Краткое описание магистерской программы:

Основными задачами программы являются освоение математического и прикладного инструментария исследования сложных экономических и социально-экономических объектов и бизнес-процессов различного уровня — от предприятия до государства; приобретение профессиональных компетенций в области математических методов и информационных технологий, обеспечивающих управление и цифровизацию экономических объектов и бизнес-процессов; изучение информационных систем управления компанией, математических

методов и алгоритмов прогнозирования, машинного обучения, анализа данных, обработки больших данных, моделирования и принятия решений; получение практических навыков работы с современным программным обеспечением экономической деятельности и разработки самостоятельных IT-продуктов.

Основными разделами программы являются: математические методы анализа экономических процессов; экономико-математические модели и методы; основы теории принятия экономических решений; компьютерные методы обработки экономической информации.

Магистерская программа «Информационные технологии В экономической деятельности» предназначена ДЛЯ подготовки магистров математического и информационного обеспечения экономической деятельности. Основными разделами программы являются: математические методы анализа экономических процессов; экономико-математические модели и методы; основы теории принятия экономических решений; компьютерные методы обработки экономической информации.

В рамках магистерской программы предполагается изучение дисциплин, посвященных современным методам принятия решений, математическому моделированию экономических и финансовых процессов с использованием современных компьютерных технологий. Изучаются следующие спецкурсы: Технология SAP, Информационные технологии управления организационными системами, Технологии анализа и прогнозирования финансовых рынков, Информационные технологии в бизнесе, Разработка Enterprise-приложений, Управление рисками.

2. Наименование магистерской программы: «Математические основы и программирование компьютерной графики»

Руководитель программы: Леденева Татьяна Михайловна, доктор технических наук, профессор, заведующая кафедрой вычислительной математики и прикладных информационных технологий факультета ПММ.

Программа реализуется кафедрой вычислительной математики и прикладных информационных технологий и кафедрой математического и прикладного анализа.

Краткое описание магистерской программы:

Подготовка магистрантов в рамках данной программы предполагает освоение ими математических и алгоритмических основ современной компьютерной графики и тенденций их развития; владение принципами построения графических объектов и обработкой изображений; наличие умений и навыков в использовании графических библиотек для создания графических объектов в различных мультимедийных приложениях.

Магистерская программа включает следующие основные разделы: математические модели и методы, составляющие теоретическую основу для представления графической информации и способов ее обработки в системах компьютерной графики; алгоритмические основы компьютерной графики, включающие способы формирования изображений и манипуляции с ними; пакеты компьютерной графики и средства программирования.

В рамках данной магистерской программы изучаются следующие спецкурсы: Математические и алгоритмические основы компьютерной графики, Вычислительная геометрия, Технологии программирования компьютерной графики, Компьютерная графика в операционной системе Linux, Цифровая обработка изображений, Математические основы компьютерной томографии.

3. Наименование магистерской программы: «Математическое и программное обеспечение информационных систем» Руководитель программы: Абрамов Геннадий Владимирович, доктор технических наук, профессор, заведующий кафедрой математического обеспечения ЭВМ факультета ПММ.

Программа реализуется кафедрой математического обеспечения ЭВМ и кафедрой кибербезопасности информационных систем.

Краткое описание магистерской программы:

Программа готовит выпускников к разработке программного и информационного обеспечения компьютерных сетей, автоматизированных систем вычислительных комплексов, сервисов, операционных систем и распределенных баз данных; к разработке архитектуры, алгоритмических и программных решений системного и прикладного программного обеспечения; использованию языков программирования, алгоритмов, библиотек и пакетов программ, продуктов системного и прикладного программного обеспечения; к разработке систем цифровой обработки изображений, средств компьютерной графики, мультимедиа и автоматизированного проектирования и др.

В рамках магистерской программы предполагается изучение следующих основных спецкурсов: Основы системного администрирования, Технология тестирования программ, Программирование на языке Python, Безопасность интернетприложений, Математические методы в криптографии, Корпоративные информационные системы.

4. Наименование магистерской программы: «Компьютерные технологии в задачах математической физики, оптимизации и управления» Руководитель программы: Курбатов Виталий Геннадьевич, доктор физикоматематических наук, профессор, заведующий кафедрой системного анализа и управления факультета ПММ.

Программа реализуется кафедрой системного анализа и управления и кафедрой математического и прикладного анализа факультета ПММ.

Краткое описание магистерской программы:

Основными разделами программы являются: дополнительные главы методов решения экстремальных задач и задач оптимального управления; выпуклый анализ; функциональный анализ и его приложения; математические методы исследования процессов управления; современные компьютерные технологии.

В рамках данной программы изучаются следующие спецкурсы: Приложения и вычислительные методы спектральной теории, Программирование и научные вычисления на языке Python, Проекционно-вариационные методы в прикладных

задачах, Управление колебаниями, Параллельное программирование прикладных задач на языке Python, Математические основы анализа сложности алгоритмов.

Программа вступительных испытаний для поступающих по направлению «Прикладная математика и информатика» (магистратура)

1. Наименование дисциплины: прикладная математика и программирование

2. Составители:

Леденева Т. М., доктор технических наук, профессор, заведующая кафедрой вычислительной математики и прикладных информационных технологий, Половинкин И. П., доктор физико-математических наук, доцент, доцент кафедры математического и прикладного анализа, Шашкин А.И. доктор физикоматематических наук, профессор, заведующий кафедрой математического и прикладного анализа, Бондаренко Юлия Валентиновна, доктор технических наук, доцент, профессор кафедры математических методов исследования операций, Аристова Екатерина Михайловна, кандидат физико-математических наук, доцент, доцент кафедры вычислительной математики и прикладных информационных технологий, Борисенков Дмитрий Васильевич, кандидат технических наук, доцент кафедры МО ЭВМ, Болотова Светлана Юрьевна, кандидат физико-математических наук, доцент, доцент кафедры МО ЭВМ, Каплиева Наталья Алексеевна, кандидат физико-математических наук, доцент, доцент кафедры МОиАИС, Костина Любовь Николаевна, кандидат физико-математических наук, доцент кафедры системного анализа и управления, Кабанцова Лариса Юрьевна, кандидат математических наук, доцент кафедры системного анализа и управления.

Основные знания, умения и навыки, которыми должен обладать поступающий

Требуется владение базовыми знаниями математики и информатики.

Поступающий должен знать и уметь использовать:

- дифференциальное и интегральное исчисление функций одной и нескольких переменных, теорию числовых и функциональных рядов, методы теории функций комплексного переменного;
- методы исследования основных задач для обыкновенных дифференциальных уравнений;
- основные понятия и методы дискретной математики;
- основы архитектуры компьютеров и интерфейсы операционных систем;
- технологии проектирования программных приложений;
- технологии и языки программирования;
- теорию и технологии баз данных.

В ходе вступительного испытания абитуриент должен продемонстрировать знания:

- принципов функционирования компьютера операционных систем;
- основного набора классических структур данных и алгоритмов;

- классификации и архитектуры современных языков программирования;
- концепций объектно-ориентированного программирования;
- основных направлений современных информационных технологий;
- современных технологий хранения данных и доступа к ним;
- реляционной модели данных и языка SQL.

умения и навыки:

- оперировать различными видами информационных объектов, соотносить полученные результаты с реальными объектами;
- работать с распространенными средствами информационно-компьютерных технологий;
- создавать информационные объекты сложной структуры, в том числе объектно- ориентированные системы, базы данных, гипертекстовые документы.
- разрабатывать алгоритмы и программы решения задач на одном из распространенных языков (C++, Java, C#, Python и др.) в соответствующих интегрированных системах программирования.

В ходе вступительного испытания абитуриент должен продемонстрировать знания:

- основных направлений современных информационных технологий;
- возможностей кодирования информационных объектов с помощью программных и аппаратных средств;
- назначения и функций операционных систем;
- принципов устройства и функционирования операционных систем;
- видов информационных моделей, описывающих реальные объекты и процессы;
- современных технологий хранения данных и доступа к ним;
- реляционной модели данных и языка SQL;
- основ архитектуры отказоустойчивых систем;

умения и навыки:

- оперировать различными видами информационных объектов, соотносить полученные результаты с реальными объектами;
- работать с распространенными средствами информационных технологий;
- планировать и реализовывать параллельные вычисления на основе прикладного интерфейса операционной системы;
- проектировать информационные системы сложной структуры;
- применять технологии реляционных баз данных.

4. Название разделов и тематический план

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

- 1) пределы;
- 2) непрерывность;
- 3) производные;
- 4) интегралы;
- 5) ряды;

6) экстремумы.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

- 1) обыкновенное дифференциальное уравнение и его решение; общее решение; частное решение; порядок дифференциального уравнения
- 2) дифференциальные уравнения первого порядка
- 3) дифференциальные уравнения высшего порядка
- 4) системы дифференциальных уравнений.

ДИСКРЕТНАЯ МАТЕМАТИКА

- 1) комбинаторика;
- 2) булевы функции;
- 3) алгебра высказываний, специальные виды формул: дизъюнктивная нормальная форма, конъюнктивная нормальная форма, полином Жегалкина:
- 4) замкнутость и полнота, основные замкнутые классы, критерий Поста, построение базиса;
- 5) алгоритмы теории графов (задача о максимальном потоке и минимальном разрезе в сети).

ИНФОРМАТИКА И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ.

- 1) компьютер фон Неймана, представление информации, классификация программ;
- 2) алгоритмы и средства их записи; языки программирования и их классификация;
- 3) архитектура императивного языка программирования;
- 4) принципы разработки программ;
- 5) основные структуры данных и классические алгоритмы;
- 6) высокоуровневые системы программирования;
- 7) проектирование программных приложений;
- 8) принципы объектно-ориентированного программирования:
- 9) основные объекты БД таблицы, триггеры, хранимые процедуры, индексы.
- 10) реляционная модель данных;
- 11) язык SQL: операторы определения данных, ограничения целостности, ограничение внешнего ключа.
- 12) оператор SELECT, выборка, поиск, сортировка, агрегатные функции и группировка, вложенные запросы к СУБД;
- 13) соединение таблиц данных (внутреннее, внешнее, полное)

5. Список рекомендуемой литературы (основной, дополнительной).

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

основная литература:

- 1. Ильин В.А. Математический анализ / В.А.Ильин, Садовничий В.А., Сендов Бл. Х. М.,2004.-Ч1 2.
- 2. Кудрявцев Л.Д. Курс математического анализа. / Л.Д. Кудрявцев. М., 2009. Т.1 2.

3. Фихтенгольц Г.М. Основы математического анализа / Г.М. Фихтенгольц. - М., 2008. – Т.1 -2.

дополнительная литература:

4. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления / Г.М. Фихтенгольц. — СПб., 2009.- Т. 1 — 3.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

основная литература:

- 1. Арнольд В.И. Обыкновенные дифференциальные уравнения. М.: Наука, 1984.
- 2. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. М.: Наука, 1974.
- 3. Филиппов А.Ф. Сборник задач по дифференциальным уравнениям. М.; Ижевск: Изд-во РХД, 2000.

дополнительная литература:

- 4. Демидович Б. П. Лекции по математической теории устойчивости. М.: Наука, 1967.
- 5. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1971.

ДИСКРЕТНАЯ МАТЕМАТИКА

основная литература:

- 1. Новиков Ф.А. Дискретная математика для программистов / Ф.А. Новиков. СПб. : Питер, 2006 (2001, 2002, 2004). 302 с.
- 2. Яблонский С.В. Введение в дискретную математику / С.В. Яблонский. М. : Высшая школа, 2008 (2001, 2002, 2003, 2006). 384 с.

дополнительная литература:

- 3. Белоусов А.И., Ткачев С.Б. Дискретная математика / А.И. Белоусов, С.Б. Ткачев. М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. 743 с.
- 4. Гаврилов Г.П. Задачи и упражнения по дискретной математике / Г.П. Гаврилов, А.А. Сапоженко. М.: Физматлит, 2005 (2004). 416 с.
- 5. Леденева Т.М. Алгоритмы теории графов. Кодовые графы. учеб. пособие по курсу "Дискретная математика" / Т.М. й, И.Б. Руссман Воронеж : Изд-во Воронеж. ун-та, 2002. 88 с.
- 6. Тишин В.В. Дискретная математика в примерах и задачах / В.В. Тишин. СПб. : БХВ-Питер, 2008. 352 с.

ИНФОРМАТИКА И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

основная литература:

- 1. Фигурнов В. Э. IBM РС для пользователя. Изд. 7-е, перераб. и доп. М.: ИН-ФРА-М, 2001. 640 с.
- 2. Себеста Р. У. Основные концепции языков программирования, 5-е изд.: Пер. с англ.– М.: Вильямс, 2001. 672 с.
- 3. Павловская Т.А. С/С++. Программирование на языке высокого уровня. СПб.: Питер, 2002. 464 с.
- 4. Дал У., Дейкстра Э., Хоор К. Структурное программирование: Пер. с англ. М.: Мир. 1975. 247 с.
- 5. Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. М.: МЦНМО, 2000. 960 с.
- 6. Чернышов М.К. Введение в объектно-ориентированное программирование (с примерами на С++). І часть (учебно-методическое пособие) // М.К. Чернышов. Во- ронеж : ИПЦ ВГУ, 2006. Тираж 50. 54 с.
- 7. Грабер М. Введение в SQL. Пер. с англ. М.: Лори, 1996. 379 с.
- 8. Дейт К.Д. Введение в системы баз данных / К.Дж. Дейт ; пер. с англ. и ред. К.А. Птицына. 8-е изд. Вильямс, 2006. 1327 с.
- 9. Хорстман К.С., Корнелл Г. Библиотека профессионала, Java 2. Том 1. Основы.: Пер. с англ. М.: "Вильямс", 2004. 848 с.
- 10. Буч Г. Объектно-ориентированный анализ и проектирование с примерами приложений / Г. Буч, Роберт А. Максимчук, Майкл У. Энгл, Бобби Дж. Янг, Джим Коналлен, Келли А. Хьюстон. Вильямс, 2008. 720с.
- 11. Фаулер М. UML. Основы. Краткое руководство по стандартному языку объектного моделирования. Символ-Плюс, 2011. 192 с.
- 12. Зандстра М. РНР. Объекты, шаблоны и методики программирования. Вильямс, 2011. 560 с.

дополнительная литература:

- 13. Шилдт Г. Самоучитель С++ / Г. Шилдт; пер. с англ. СПб. : БХВ-Петербург, 1997. 512с.
- 14. Страуструп Б. Язык программирования С++ / Б. Страуструп; пер. с англ. М. : Радио и связь, 1995. 352с.
- 15. Макконнелл С. Совершенный код. Мастер-класс: Пер. с англ. М.: Русская редакция; СПб.: Питер, 2005. 896 с.
- 16. Гарсиа Молина Г., Ульман Д., Уидом Д. Системы баз данных. Полный курс. Пер. с англ. М.: Вильямс, 2002. 1088 с.
- 17. Робинсон С., Корнес О. и др. С# для профессионалов, в 2-х томах. Пер. с англ. М.: Лори, 2003. 1002с.

6. Образец контрольно-измерительного материала (КИМ)

К первому типу относятся задания для проверки базовых знаний - тесты. Это вопросы с выбором одного или нескольких вариантов ответа, вопросы на установление соответствия или вопросы с открытым ответом, предназначенные для проверки простейших навыков, знаний и умений. Контрольно-измерительный материал (КИМ) содержит 10 заданий этого типа.

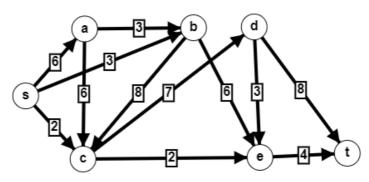
Ко второму типу относятся более сложные задания - задания с расширенным ответом, предназначенные для проверки углубленных навыков, знаний и умений. Контрольно-измерительный материал (КИМ) содержит 5 заданий этого типа. Среди них три задания по математическим дисциплинам и два задания из раздела "Информатика и информационные технологии" по

дисциплинам "Информатика и программирование", "Объектно-ориентированное программирование", "Базы данных".

ТЕСТОВАЯ ЧАСТЬ

- **1.** Функция $f(x) = (1-x)^{-1}$ раскладывается в ряд Маклорена в окрестности точки $x_0 = 0$ следующим образом (выбрать все правильные варианты):
- 1) $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$
- 2) $f(x) = x \frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \dots$
- 3) $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$
- 4) $f(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \dots + \frac{x^n}{n!} + \dots$ 5) $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$
- 6) $f(x) = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \frac{x^6}{6!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$ 7) $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}$
- 8) $f(x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \frac{x^5}{5} + \dots + \frac{(-1)^{n-1}x^n}{n} + \dots$ 9) $f(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$
- 10) $f(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$
- 11) $f(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$
- 12) $f(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$ 13) $f(x) = \sum_{n=0}^{\infty} x^n$ 14) $f(x) = 1 + x + x^2 + \dots + x^n + \dots$

- **2.** Производная функции $f(x) = e^{-2x}$ в точке $x_0 = 0$ равна
- 1) 0
- 2) 1
- 3) 2
- 4) 3
- 5) -1


- 7) -3 **3.** Определите тип особой точки системы дифференциальных уравнений $\begin{cases} \frac{dx}{dt} = 2x + 2y \\ \frac{dy}{dt} = -3x 2y \end{cases}$
- 1) седло,
- 2) узел,
- 3) фокус,
- 4) центр.
- **4.** Запишите решение уравнения y'' + y = 0, удовлетворяющее начальному условию y(0)=1, y'(0)=0.

5. Решите систему уравнений
$$\begin{cases} A_x^{y-3} = \frac{1}{8} A_x^{y-2}, \\ C_x^{y-3} = \frac{5}{8} C_x^{y-2}. \end{cases}$$

- **6.** Используя критерий полноты, выясните, является ли полной следующая система функций $F = \{x \mid y, xy\}$.
- **7.** Ограничение, накладываемое на свойство объектов и препятствующее взаимозаменяемости абстракций различных типов.
- 1) абстракция,
- 2) типизация,
- 3) инкапсуляция,
- 4) наследование.
- **8.** Способен запоминать адрес каждого компьютера, подключенного к его портам и действовать как регулировщик
- 1) модем,
- 2) коммутатор,
- 3) концентратор,
- 4) маршрутизатор.
- **9.** Отправление собеседнику сообщений агрессивного, запугивающего характера
- 1) цифровая репутация,
- 2) кибербуллинг,
- 3) протекстинг,
- 4) шифрование,
- 5) фишинг.
- 10. Декларативный подход к манипулированию данными предлагает
- 1) реляционная алгебра,
- 2) реляционное исчисление,
- 3) оба этих механизма,
- 4) ни один из двух этих механизмов.

ЗАДАЧИ С РАЗВЕРНУТЫМ ОТВЕТОМ

- **1.** Найдите все точки условного экстремума функции u = xy + 2xz + 2yz при условии связи xyz = 108, определить характер условного экстремума и значения функции в этих точках.
- **2.** Найдите решение уравнения $y'' y' 2y = (x + x^2)e^x$, удовлетворяющее заданным начальным условиям y(0) = 0, y'(0) = 0.
- **3.** Для данного графа определите правильную (монотонную) нумерацию вершин. С помощью соответствующего алгоритма найдите длину максимального пути из вершины s в вершины с четными номерами. Чему равна длина максимального пути из s в t? Укажите сам путь.

- **4.** Дана последовательность из N целых чисел. Найти сумму четных элементов непустого фрагмента, расположенного между предпоследним и последним элементами, содержащими цифру 0, не включая границы.
- 5. Пусть база данных некоторого интернет-сообщества имеет следующую структуру:

```
CREATE TABLE LOGIN ( /* Пользователи */
LOGIN_ID integer primary key, /* ID пользователя */
NAME varchar(50)); /* Имя пользователя */
CREATE TABLE SECTION ( /* Секции */
SECTION_ID integer primary key, /* ID секции */
NAME varchar(100)); /* Название секции */
CREATE TABLE PARTICIPANT ( /* Участники секций */
LOGIN_ID integer references SECTION, /* ID секции */
primary key (SECTION_ID, LOGIN_ID));

CREATE TABLE PRIVATE_MESSAGE ( /* Личные сообщения */
FROM_LOGIN integer references LOGIN, /* ID сообщения */
FROM_LOGIN integer references LOGIN, /* OT кого */
TO_LOGIN integer references LOGIN, /* Komy */
CONTENTS varchar(1024)); /* Текст сообщения */

CREATE TABLE SECTION_MESSAGE ( /* Сообщения в секции */
MESSAGE_ID integer primary key, /* ID сообщения */
SECTION_ID integer references SECTION, /* ID секции */
FROM_LOGIN integer references SECTION, /* ID секции */
FROM_LOGIN integer references LOGIN, /* TEКСТ СООБЩЕНИЯ */
CONTENTS varchar (1024)); /* Текст сообщения */
```

Пользователи могут отправлять личные сообщения друг другу, а также сообщения в секции, которые получают все участники соответствующих секций (в том числе каждый получает и свои сообщения в тех секциях, участником которых он является).

Напишите запрос, который возвращает их БД указанную информацию: выдать имя пользователя, для которого максимальна суммарная длина личных сообщений (отправленных и полученных), и саму эту суммарную длину сообщений. Если таких пользователей несколько, выдать их всех. Для вычисления длины символьного поля служит функция LENGTH.

7. Вариант ответа на КИМ

Задачи тестовой части не предполагают описания решения. Достаточно записать ответ. В задачах с развернутым ответом поступающий должен привести полное, подробное обоснованное решение каждой задачи.

8. Критерии оценки качества подготовки поступающего

Задания тестовой части оцениваются по принципу «верно – неверно». За верный ответ на каждое задание ставится 5 баллов. За неверный ответ или частичноверный – 0 баллов.

Каждое задание части с развернутым ответом оценивается в зависимости от степени приближения к правильному результат и обоснованности рассуждений.

- 10 баллов ставится за правильное решение, в котором присутствуют все существенные моменты;
- 5-9 баллов ставится в целом за правильное решение, в котором некоторые существенные моменты отсутствуют;
- 1-4 балла ставится за не совсем правильное решение, из которого видно, что студент понял, что нужно было сделать;
- 0 баллов ставится, если студент не понял, в чем заключается задание, и за полностью неверное решение.

Итоговая оценка равна сумме полученных баллов.